Exponential Lower Bounds for AC-Frege Imply Superpolynomial Frege Lower Bounds
نویسندگان
چکیده
We give a general transformation which turns polynomialsize Frege proofs to subexponential-size AC-Frege proofs. This indicates that proving exponential lower bounds for AC-Frege is hard, since it is a longstanding open problem to prove super-polynomial lower bounds for Frege. Our construction is optimal for tree-like proofs. As a consequence of our main result, we are able to shed some light on the question of weak automatizability for bounded-depth Frege systems. First, we present a simpler proof of the results of Bonet et al. [5] showing that under cryptographic assumptions, bounded-depth Frege proofs are not weakly automatizable. Secondly, we show that because our proof is more general, under the right cryptographic assumptions, it could resolve the weak automatizability question for lower depth Frege systems. ? Supported by NSERC
منابع مشابه
A Exponential Lower Bounds for AC-Frege Imply Superpolynomial Frege Lower Bounds
We give a general transformation which turns polynomial-size Frege proofs to subexponential-size AC0Frege proofs. This indicates that proving truly exponential lower bounds for AC0-Frege is hard, since it is a longstanding open problem to prove super-polynomial lower bounds for Frege. Our construction is optimal for proofs of formulas of unbounded depth. As a consequence of our main result, we ...
متن کاملA reduction of proof complexity to computational complexity for $AC^0[p]$ Frege systems
We give a general reduction of lengths-of-proofs lower bounds for constant depth Frege systems in DeMorgan language augmented by a connective counting modulo a prime p (the so called AC[p] Frege systems) to computational complexity lower bounds for search tasks involving search trees branching upon values of maps on the vector space of low degree polynomials over Fp. In 1988 Ajtai [2] proved th...
متن کاملAn Exponenetioal Lower Bound to the Size of Bounded Depth Frege Proofs of the Pigeonhole Principle
We prove lower bounds of the form exp (n " d) ; " d > 0; on the length of proofs of an explicit sequence of tautologies, based on the Pigeonhole Principle, in proof systems using formulas of depth d; for any constant d: This is the largest lower bound for the strongest proof system, for which any superpolynomial lower bounds are known.
متن کاملThe Complexity of the Haj
The Hajj os Calculus is a simple, nondeterministic procedure which generates the class of non-3-colorable graphs. Mansseld and Welsch MW] posed the question of whether there exist graphs which require exponential-sized Hajj os constructions. Unless NP 6 = coNP, there must exist graphs which require exponential-sized constructions, but to date, little progress has been made on this question, des...
متن کاملAn Exponential Separation between the Matching Principleand
The combinatorial matching principle states that there is no perfect matching on an odd number of vertices. This principle generalizes the pigeonhole principle, which states that for a xed bi-partition of the vertices, there is no perfect matching between them. Therefore , it follows from recent lower bounds for the pigeonhole principle that the matching principle requires exponential-size boun...
متن کامل